-
available on the development of spatiotemporal statistical modelling of climate-sensitive infectious diseases, with a particular emphasis on Bayesian hierarchical modeling using Integrated Nested Laplace
-
, non-parametric methods, machine learning, hierarchical Bayesian modelling, and time- and space-modelling. The group emphasizes general methodological development, often motivated by real-world
-
appropriate conditions, it provides a confidence set (credibility set if prediction is Bayesian) for a multivariate estimate with statistical coverage guarantees. This PhD project aims to develop new CP methods
-
); mathematical modelling of cancer; probabilistic modelling and Bayesian inference, stochastic algorithms and simulation-based inference; and statistical machine learning. More about the position The position is