Sort by
Refine Your Search
-
Listed
-
Category
-
Employer
- ;
- Cranfield University
- ; Swansea University
- ; The University of Manchester
- University of Nottingham
- ; Newcastle University
- ; The University of Edinburgh
- ; University of Birmingham
- University of Cambridge
- ; City St George’s, University of London
- ; University of Cambridge
- ; University of Exeter
- ; University of Leeds
- ; University of Nottingham
- ; University of Oxford
- ; University of Warwick
- Imperial College London
- ; Aston University
- ; Brunel University London
- ; Cranfield University
- ; Loughborough University
- ; Manchester Metropolitan University
- ; University of Bradford
- ; University of Bristol
- ; University of East Anglia
- ; University of Essex
- ; University of Reading
- ; University of Sheffield
- ; University of Southampton
- ; University of Surrey
- ; University of York
- Abertay University
- Harper Adams University
- 23 more »
- « less
-
Field
-
as to what role law should play in reducing potential harms, in helping to distribute risks and benefits across different groups in society, and in how existing (or future) legal rights and duties
-
formulation, which displays striking similarities to that used by the Computational Fluid Dynamics (CFD) community, has inspired the investigators to adopt conventional CFD algorithms in the novel context
-
quantitative analysis skills and experience developing algorithms and/or conducting statistical analyses with biological datasets. Background and work knowledge in statistics, algorithms, optimization of novel
-
. These problems have been compounded by the emergence of Artificial Intelligence. New forms of algorithmic manipulation have been used to sow discord in democratic societies, undermine trust in politics, and erode
-
sustainability. The research will delve into power-aware computing strategies, thermal management, and the development of algorithms that balance performance with energy consumption. Students will aim to create
-
-critical systems. The research will focus on developing AI-powered verification tools, health monitoring algorithms, and compliance assurance techniques that ensure system reliability throughout
-
of advanced computational techniques. This research will integrate power system modelling, optimisation algorithms, and artificial intelligence (AI) techniques to develop an innovative framework for strategic
-
in composites. The successful candidate will: Investigate the formation, distribution, and impact of defects during composite manufacturing; Develop and refine ultrasonic and thermographic inspection
-
leverage low-precision accelerators for scientific computing by using a number of tricks, known as "mixed-precision" algorithms. Developing such algorithms is far from trivial. We can look at computational
-
areas, and be able to creatively combine disciplines to make new research advances in fluid mechanics. You will be creating data-driven algorithms which can solve state estimation problems in fluid