Sort by
Refine Your Search
-
Listed
-
Category
-
Program
-
Employer
- INESC TEC
- Universidade de Coimbra
- University of Minho
- Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento _IST-ID
- INESC ID
- Universidade de Aveiro
- FEUP
- Instituto de Telecomunicações
- Centro de Computação Grafica
- LNEC, I.P.
- NOVA.id.FCT- Associação para a Inovação de Desenvolvimento da FCT
- University of Beira Interior
- Faculdade de Ciências e Tecnologia
- Instituto Politécnico de Coimbra
- Instituto Politécnico de Setúbal
- Instituto Superior de Engenharia do Porto
- UNINOVA - Instituto de Desenvolvimento de Novas Tecnologias
- UNIVERSIDADE DE ÉVORA
- Universidade do Algarve
- University of Algarve
- Associação COLAB TRIALS - Laboratório Colaborativo para a Inovação em Ensaios Clínicos
- Associação Fraunhofer Portugal Research
- Associação Universidade-Empresa para o Desenvolvimento - TecMinho
- CIIMAR - Interdisciplinary Center of Marine and Environmental Research - Uporto
- Escola Superior de Design, Gestão e Tecnologias da Produção de Aveiro - Norte da Universidade de Aveiro
- FARM-ID - Associação da Faculdade de Farmácia para a Investigação e Desenvolvimento
- Faculdade de Ciências Médicas|NOVA Medical School da Universidade NOVA de Lisboa.
- Gulbenkian Institute for Molecular Medicine
- ISCTE - Instituto Universitário de Lisboa
- ISCTE-IUL
- Instituto Nacional de Investigação Agrária e Veterinária, I.P.
- Instituto Politécnico de Bragança
- Instituto de Sistemas e Robótica (ISR)
- International Iberian Nanotechnology Laboratory (INL)
- Iscte-IUL
- LIP - Laboratório de Instrumentação e Física Experimental de Partículas
- NOVA Information Management School (NOVA IMS)
- Universidade Católica Portuguesa - Porto
- Universidade Lusófona´s Research Center for Digital Human-Environment Interaction Lab
- Universidade da Madeira
- Universidade de Trás-os-Montes e Alto Douro
- Universidade do Minho - ISISE
- University of Trás-os-Montes and Alto Douro
- Value for Health CoLAB
- iBET - Instituto de Biologia Experimental e Tecnológica
- 35 more »
- « less
-
Field
-
the field of Artificial Intelligence and experience using machine learning and deep learning development environments and libraries is a plus. As set forth FCT Research Scholarship Regulation No. 950/2019
-
) The grant holder will benefit from health insurance, supported by INESC TEC. 2. OBJECTIVES: Development of novel Machine Learning techniques applied in systems/networks research, which includes, but is not
-
the following profile: Enrolled in a master’s degree in computer engineering or related fields; Knowledge of Extended Reality application development and/or knowledge of machine learning, information
-
Pose EstimationStrong background in computer vision and machine learning applied to pose estimation and visual servoing; Experience with OpenCV, PCL (Point Cloud Library), PyTorch/TensorFlow, and 3D
-
of the state of the art in machine learning for generation of artificial data; - identify and select the appropriate methods for the study in question; - develop the research capacity through the application
-
Engineering/ Electrical Engineering. 2. Admission Requirements: Bachelor's degree in Computer Engineering, Systems and Information Technologies Engineering, Electrical and Computer Science Engineering, or in a
-
domain in the design of deep learning algorithms for cardiovascular disease detection. 4. REQUIRED PROFILE: Admission requirements: Master’s degree in Biomedical Engineering, Computer Engineering
-
INESC TEC is accepting applications to award 4 Scientific Research Grant - NEXUS - CTM (AE2025-0564)
systems; - experience in applying Artificial Intelligence/Machine Learning and/or optimization algorithms to wireless networking systems.; Minimum requirements: The four Research Initiation Grants to be
-
an emphasis on the development of methodologies and techniques for Evolutionary Computation and Machine Learning. Work plan: Review of the state of the art in Machine Learning and Deep Reinforcement Learning
-
PROGRAMME AND TRAINING: - extend the knowledge of the state of the art in machine learning for lung cancer imaging data; - identify and select the appropriate methods for the study in question; - develop