145 machine-learning "https:" "https:" "https:" "https:" "https:" "https:" positions in Portugal
Sort by
Refine Your Search
-
Listed
-
Category
-
Program
-
Employer
- INESC TEC
- Universidade de Coimbra
- University of Minho
- Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento _IST-ID
- FEUP
- INESC ID
- Instituto de Telecomunicações
- Universidade de Aveiro
- LNEC, I.P.
- Universidade do Minho - ISISE
- University of Beira Interior
- Centro de Computação Grafica
- Escola Superior de Design, Gestão e Tecnologias da Produção de Aveiro - Norte da Universidade de Aveiro
- Faculdade de Ciências e Tecnologia
- ISCTE - Instituto Universitário de Lisboa
- Instituto Politécnico de Coimbra
- Instituto Politécnico de Setúbal
- Instituto Superior de Engenharia do Porto
- NOVA.id.FCT- Associação para a Inovação de Desenvolvimento da FCT
- UNINOVA - Instituto de Desenvolvimento de Novas Tecnologias
- UNIVERSIDADE DE ÉVORA
- Universidade do Algarve
- University of Algarve
- University of Trás-os-Montes and Alto Douro
- Associação COLAB TRIALS - Laboratório Colaborativo para a Inovação em Ensaios Clínicos
- Associação Fraunhofer Portugal Research
- Associação Universidade-Empresa para o Desenvolvimento - TecMinho
- CIIMAR - Interdisciplinary Center of Marine and Environmental Research - Uporto
- ESS - Escola Superior de Saúde
- FARM-ID - Associação da Faculdade de Farmácia para a Investigação e Desenvolvimento
- Faculdade de Ciências Médicas|NOVA Medical School da Universidade NOVA de Lisboa.
- Fastprinciple,lda
- Gulbenkian Institute for Molecular Medicine
- ISCTE-IUL
- Instituto Nacional de Investigação Agrária e Veterinária, I.P.
- Instituto Politécnico de Bragança
- Instituto de Sistemas e Robótica (ISR)
- International Iberian Nanotechnology Laboratory (INL)
- LIP - Laboratório de Instrumentação e Física Experimental de Partículas
- NOVA Information Management School (NOVA IMS)
- Universidade Autónoma de Lisboa
- Universidade Católica Portuguesa - Porto
- Universidade Lusófona´s Research Center for Digital Human-Environment Interaction Lab
- Universidade da Madeira
- Universidade de Trás-os-Montes e Alto Douro
- University of Aveiro
- Value for Health CoLAB
- iBET - Instituto de Biologia Experimental e Tecnológica
- 38 more »
- « less
-
Field
-
: Applicants must be enrolled in a PhD programme or in non-degree courses integrated into the educational project of the University of Aveiro, holding a Master’s degree in Computer Engineering or related fields
-
experience in Data Science/Machine Learning projects or initiatives (professional projects, coursework, internships, personal projects or hackathons, etc.) Knowledge and experience with the use of tools
-
spanning design, modelling and simulation of photonic systems, sensor systems, signal processing and device manufacturing, development of machine learning algorithms, and design of optical communication
-
should possess a strong background in advanced computing and data science, machine learning, or in a related field, with expertise in monitoring data reliability, quality assurance, and AI modelling
-
(No experience, Basic Knowledge, Solid Experience) Technical and Domain Knowledge Industrial Processes & Systems Artificial Intelligence and Machine Learning Cyber-Physical Systems and Sensing Innovation and
-
(spoken and written), academic excellence, autonomy, curiosity, and attention to detail. Resumes demonstrating knowledge of programming in Python and/or Matlab; computer vision, image processing, learning
-
Machine Learning model will be developed, capable of adjusting the electric assistance to optimise the balance between performance and consumption. Finally, the system will be validated with a real e-bike
-
, and clustering methods; Knowledge of machine learning approaches for classification and patient stratification is valued; Postdoctoral experience in the appropriate field, with research outputs ideally
-
CIIMAR - Interdisciplinary Center of Marine and Environmental Research - Uporto | Portugal | about 1 month ago
research in microbial genomics, in particular related to natural products biosynthesis and using metagenomics and genomics datasets. Experience in machine learning and the application of artificial
-
that combine machine learning and classical methods. Work Plan: -State-of art revier and publication of a review paper -Development of classical approaches -Development of hybrid approaches -Journal publication