Sort by
Refine Your Search
-
Listed
-
Category
-
Employer
- INESC TEC
- FCiências.ID
- University of Minho
- Universidade de Coimbra
- Politécnico de Leiria
- INESC ID
- Nova School of Business and Economics
- REQUIMTE - Rede de Quimica e Tecnologia
- Universidade de Aveiro
- University of Beira Interior
- Centro de Engenharia Biológica da Universidade do Minho
- FEUP
- Gulbenkian Institute for Molecular Medicine
- Instituto Politécnico de Bragança
- University of Algarve
- Instituto Superior Técnico
- National Laboratory of Energy and Geology
- Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento _IST-ID
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (i3S)
- Centro de Investigação em Psicologia (CIPsi)
- Faculdade de Letras da Universidade de Lisboa
- Universidade Católica Portuguesa - Porto
- Institute of Systems and Robotics-Faculty of Sciences and Technology of the University of Coimbra
- Instituto Pedro Nunes
- Instituto Politécnico de Beja
- Instituto Português do Mar e da Atmosfera, I.P.
- LNEC, I.P.
- Laboratório de Paisagens, Património e Território - Lab2PT
- NOVA School of Science and Technology
- NOVA.id.FCT- Associação para a Inovação de Desenvolvimento da FCT
- Research Centre on Child Studies
- Universidade do Minho - ISISE
- ASSOCIAÇÃO BIOPOLIS
- Associação Universidade-Empresa para o Desenvolvimento - TecMinho
- Escola Superior de Educação João de Deus
- Faculdade de Ciências Médicas|NOVA Medical School da Universidade NOVA de Lisboa.
- Faculdade de Ciências Sociais e Humanas
- INEB - Instituto Engenharia Biomedica
- ISCTE-IUL
- Institute of Systems and Robotics, Faculty of Sciences and Technology of the University of Coimbra
- Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial
- Life and Health Sciences Research Institute (ICVS), from the School of Medicine (EM) of the University of Minho
- NOVA School of Science and Technology | FCT NOVA
- Polytechnic University
- Universidade Autónoma de Lisboa
- Universidade Nova de Lisboa
- iBET - Instituto de Biologia Experimental e Tecnológica
- 37 more »
- « less
-
Field
-
|2025/787 under the scope of the cryptographic development task funded by the Crypto_Chaves project (HPCAS group) Application submission from 28-Oct to 11-Nov 2025 WHO WE ARE INESC-ID (www.inesc-id.pt
-
development", project number S1/4.6/E0050, financed by the European Regional Development Fund (ERDF), through the Interreg VI-B Sudoe Programme 2021-2027, under the following conditions: Scientific Area
-
call for awarding a part-time (50%) research fellowship (RF) for the development of the platform DB-HERITAGE – Database of construction materials of historical and heritage interest. 3 – Financing source
-
benefit from health insurance, supported by INESC TEC. 2. OBJECTIVES: ● Research and develop novel reliable deep learning computer vision algorithms for the detection and quantification of GIM lesions
-
. Develop intelligent algorithms that allow cooling systems to be controlled based on sensor inputs, ensuring adaptation to different scenarios and operating conditions; 4. Integrate and validate
-
and relative position estimation. 3- Design and implement relative localisation and coordination algorithms. 4- Integrate control and communication systems; deal with disturbances and latency. 5
-
available under the following conditions: OBJECTIVES | FUNCTIONS Development and evaluation of machine unlearning algorithms for speech foundation models, including: - Selection and preparation of models and
-
://www.inesctec.pt/pagamento-propinas-bolseirosEN ) The grant holder will benefit from health insurance, supported by INESC TEC. 2. OBJECTIVES: - Development and testing of algorithms and methodologies based
-
://www.inesctec.pt/pagamento-propinas-bolseirosEN ) The grant holder will benefit from health insurance, supported by INESC TEC. 2. OBJECTIVES: - Development and testing of algorithms and methodologies based
-
benefit from health insurance, supported by INESC TEC. 2. OBJECTIVES: Research and develop novel reliable deep learning computer vision algorithms for the detection and quantification of GIM lesions