40 machine-learning-"https:" "https:" "https:" "https:" "https:" "https:" positions in Italy
Sort by
Refine Your Search
-
Listed
-
Category
-
Program
-
Employer
- Politecnico di Milano
- AI4I
- Libera Università di Bolzano
- Nature Careers
- Scuola Internazionale Superiore di Studi Avanzati
- Università degli Studi di Genova
- Consiglio Nazionale delle Ricerche
- Dipartimento di Ingegneria Strutturale e Geotecnica - La Sapienza
- Fondazione Bruno Kessler
- Gran Sasso Science Institute
- Istituto Italiano di Tecnologia
- Istituto Nazionale di Fisica Nucleare
- Luiss Guido Carli
- Scuola Superiore Sant'Anna
- UNIMORE
- UNIVERSITA’ DEGLI STUDI DI PARMA
- University of Padova
- University of Perugia
- Università degli Studi di Brescia
- Università degli Studi di Padova - Dipartimento di Scienze Statistiche
- Università degli Studi di Palermo
- Università degli Studi di Trento
- Università degli Studi di Verona
- Università di Trento
- 14 more »
- « less
-
Field
-
Research Infrastructure? No Offer Description The requested figure will be responsible for developing and implementing both machine-learning methods for analysing images and audio files in Python, as
-
fluid mechanics and turbulent flows, high-performance computing, machine learning methods in computational problems. GSSI is a world-renowned research institute and school of advanced studies
-
of signal processing and machine learning algorithms for the extraction of acoustic, prosodic, and semantic parameters from voice recordings. Alongside the innovative research activities, the project requires
-
traditional and machine-learning and AI-based approaches will be used. Where to apply Website https://aunicalogin.polimi.it/aunicalogin/getservizio.xml?id_servizio=1079 Requirements Additional Information
-
, enabling innovative applications and translational research. We seek exceptional candidates with strong expertise in the fields of genome editing and cellular immunotherapy (CAR-T cells, NK-cells
-
experience in Artificial Intelligence (AI) and Machine Learning (ML) concepts, algorithms, and frameworks; Hands-on experience with popular ML libraries and tools (e.g., TensorFlow, PyTorch, scikit-learn
-
useful during underwater monitoring and exploration missions. Split computing provides a concrete means to enable the execution of high-performance machine learning models on sensory data collected by
-
of renewable energy sources, with a focus on wind and photovoltaic plants. Through the integration of meteorological observations, high-resolution numerical models and machine learning algorithms, highly
-
based on the new data generated, incorporating key variables identified in (i), and use statistical and machine learning methodologies to ensure high predictive accuracy and robustness; iii) validation
-
. The project aims to integrate machine learning, artificial intelligence (AI), and statistical modeling to analyze spatial transcriptomic data at a sub-cellular resolution, with the goal of advancing biomedical