Sort by
Refine Your Search
-
Listed
-
Category
-
Program
-
Employer
- Forschungszentrum Jülich
- DAAD
- Fraunhofer-Gesellschaft
- Academic Europe
- Nature Careers
- Technical University of Munich
- University of Siegen
- Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt
- Helmholtz-Zentrum Dresden-Rossendorf - HZDR - Helmholtz Association
- Kunsthistorisches Institut in Florenz - Max Planck Institute, Florence, Italy
- Max Planck Institute for Astrophysics, Garching
- Max Planck Institute for Evolutionary Biology, Plön
- UNIVERSITY OF TECHNOLOGY NUREMBERG
- Universitaet Muenster
- University of Bonn •
- University of Stuttgart
- Universität Siegen
- 7 more »
- « less
-
Field
-
through the EU Research Framework Programme? Not funded by a EU programme Is the Job related to staff position within a Research Infrastructure? No Offer Description In the Faculty IV: School of Science and
-
research projects. In parallel, they participate in the comprehensive BIGS DrugS education programme, which includes workshops, lectures, colloquia and symposia. Mentoring is performed by two experienced
-
:59 (UTC) Country Germany Type of Contract Temporary Job Status Part-time Hours Per Week 19.92 Is the job funded through the EU Research Framework Programme? Not funded by a EU programme Is the Job
-
, computer science, simulation science with a strong background in applied mathematics Excellent programming skills (Python, C/C++) Good experience in machine learning and parallel computing Good organisational skills
-
GPU-capable, parallelized simulation frameworks. Work closely with experts in HPC and power systems to enhance scalability and computational performance. Disseminate your findings through scientific
-
strong background in applied mathematics Excellent programming skills (Python, C/C++) Good experience in machine learning and parallel computing Good organisational skills and ability to work both
-
timetable for the four-year project to be submitted to DAAD. Development of relevant analytical methods and setting up of required laboratory equipment will be conducted in parallel. Execution of the research
-
the case of challenging environmental conditions, the method of multi-scale parallel single-pixel imaging has the potential to enable breakthrough advances. The “image processing and AI” group contributes
-
-aware learning methods with domain decomposition techniques, enabling parallel training and efficient GPU-supported implementation. Your tasks: Development of physics-aware ML models for 3D blood-flow
-
engineering Very strong mathematical and algorithmic background Programming experience (Python, C++, etc.) Familiarity with parallel programming frameworks (e.g. MPI, CUDA) Fluent in written and spoken English