Sort by
Refine Your Search
-
My area of expertise is condensed matter theory. I am interested in the interplay between interactions and unconventional electronic properties of novel materials including graphene, topological insulators and Weyl semimetals. The former favours quantum states of matter (e.g. excitonic...
-
I am interested in the most catastrophic and explosive collisions in the Universe, such as the mergers of neutron stars and black holes. I study these using both gravitational waves and electromagnetic signatures, primarily focussed on linking the data from these exciting experiments with our...
-
My research interests focus on the stars - primarily their structure, evolution and nucleosynthesis. This can involve modelling of mixing in stars, or effects of changing nuclear burning rates; trying to understand why certain elements are more abundant than others; or how the different...
-
My research focuses on the theory of strongly correlated phenomena in cold atomic gases and electron systems. Particular topics of interest include low-dimensional quantum systems, superconductivity and quantum impurities. A large part of my work is carried out within the Australian Centre of...
-
My primary areas of research activity are two fold: first, studing thermonuclear (X-ray) bursts from accreting neutron stars; and second, searches for optical counterparts of gravitational-wave events with the GOTO telescope network. Projects focussing on thermonuclear bursts will involve...
-
between theoretical and computational high-energy physics. The research contributes to the world-leading PYTHIA Monte Carlo Event Generator, which serves as the baseline for the majority of experimental
-
I supervise a wide range of projects in gravitational-wave astronomy. This work is carried out within the Centre of Excellence for Gravitational-wave Discovery: OzGrav. As a member of my team, you will have the opportunity to interact with gravitational-wave researchers throughout Australia and...
-
My work focuses on experimental research in quantum sensing and quantum microscopy using the nitrogen-vacancy (NV) centre in diamond. In particular, we are interested in applying quantum sensing for examining and imaging the magnetic fields from exotic conducting materials (e.g. superconductors,...
-
Monash mentoring program. Not only do I gain satisfaction from helping my student mentees, I've gained leadership and communication skills to help in my future career. Am I eligible? You must be one
-
I work on the study of massive and supermassive stars (10-100,000 solar masses); the first generations of stars in the universe (Pop III stars); evolution of rotating massive stars and the spin of their remnants (including predictions for GW sources); mixing and transport processes in the...