Sort by
Refine Your Search
-
Listed
-
Category
-
Employer
- DAAD
- Technical University of Munich
- Forschungszentrum Jülich
- Leibniz
- Nature Careers
- Heidelberg University
- University of Tübingen
- Humboldt-Stiftung Foundation
- Ludwig-Maximilians-Universität München •
- University of Göttingen •
- Hannover Medical School •
- RWTH Aachen University
- Fraunhofer-Gesellschaft
- GFZ Helmholtz Centre for Geosciences
- Helmholtz-Zentrum Geesthacht
- Max Planck Institute for Demographic Research (MPIDR)
- University of Münster •
- University of Potsdam •
- Freie Universität Berlin •
- Friedrich Schiller University Jena •
- GFZ Helmholtz-Zentrum für Geoforschung
- Helmholtz Zentrum Hereon
- Helmholtz-Zentrum Berlin für Materialien und Energie
- Helmholtz-Zentrum Dresden-Rossendorf •
- Helmholtz-Zentrum München
- Heraeus Covantics
- Justus Liebig University
- Leibniz-Institute for Plant Genetics and Crop Plant Research
- Leipzig University •
- MPINB
- Max Planck Institute for Biogeochemistry •
- Max Planck Institute for Biogeochemistry, Jena
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg
- Max Planck Institute for Human Cognitive and Brain Sciences •
- Max Planck Institute for Meteorology •
- Max Planck Institute for Molecular Genetics •
- Max Planck Institute for Plant Breeding Research •
- Max Planck Institute for Sustainable Materials •
- Max Planck Institute for the Structure and Dynamics of Matter •
- Max Planck Institute of Molecular Plant Physiology •
- TU Darmstadt
- Technische Universitaet Darmstadt
- Technische Universität Berlin •
- Technische Universität München
- Ulm University •
- University of Bremen •
- University of Cologne •
- University of Passau •
- University of Stuttgart •
- WIAS Berlin
- 40 more »
- « less
-
Field
-
, crystallization, or molecular aggregation/switching. The BEAM projects cover a wide spread of topics, including theoretical physics and chemistry work. For example, our targeted syntheses are supported by models
-
, modelling and simulation of photonic systems, sensor systems, signal processing and device manufacturing, development of machine learning algorithms, and design of optical communication networks or power
-
quantification, model-order reduction, or multi-fidelity methods. The primary fields of application are life science, medicine and health, earth observation, and robotics. Consequently, a MUDS student will learn
-
and Data Science (MIDS) at the KU Eichstätt-Ingolstadt. The research group works at the intersection of analysis, modeling and simulation. The advertised position is partly funded by the German Research
-
and parametrizations that lead to improved, energetically consistent, climate models. Close collaboration with the other research areas of the CRC is expected, and more information can be found
-
Environment (VTE) for disaster response simulation, integration of Building Information Modelling (BIM) with Structural Health Monitoring (SHM) using smart sensor networks, and resilience-informed design
-
stem/progenitor cell plasticity (HSPCs), and leukemic transformation. The project will use innovative 2D and 3D HSPC/MSC co-culture models, functional clonogenic and differentiation assays, bulk and
-
play a central role in this interdisciplinary initiative. They will: Develop and apply machine learning (ML) methods – including surrogate modeling, feature extraction, and inverse design algorithms
-
. Furthermore, we use the olfactory network as a model to study the dynamics of neuronal development, synaptogenesis, neuronal degeneration, and regeneration. Our research is complemented by behavioral studies
-
Virtual Training Environment (VTE) for disaster response simulation, integration of Building Information Modelling (BIM) with Structural Health Monitoring (SHM) using smart sensor networks, and resilience