Sort by
Refine Your Search
-
Listed
-
Category
-
Program
-
Employer
- Nature Careers
- CNRS
- Ecole Centrale de Nantes
- Grenoble INP - Institute of Engineering
- Institut Pasteur
- NeuroSchool, Aix-Marseille Université
- Université de Lorraine
- Ecole Nationale Supérieure des Mines de Saint Etienne
- IMT Atlantique
- INSA Strasbourg
- Inria, the French national research institute for the digital sciences
- Université de Lille
- Sorbonne Université SIM (Sciences, Ingénierie, Médecine)
- Toulouse INP
- Université d'Orléans
- Université de Bordeaux / University of Bordeaux
- Université de Picardie - Jules Verne
- Université du Littoral Côte d'Opale
- Aix-Marseille Université
- CEA
- CNRS - Université de Lorraine
- Ecole nationale des chartes
- Heudiasyc Laboratory UMR CNRS 7253
- IMT Atlantique (Nantes)
- IMT Mines Albi
- IMT Mines Ales
- IMT Nord Europe
- INSA Rouen Normandie - CNRS UMR 6614
- INSERM U1082
- Institut Agro Rennes-Angers
- Institut des Sciences Analytiques
- Mines Paris - PSL, Centre PERSEE
- Télécom Paris
- Université Claude Bernard Lyon 1
- Université Grenoble Alpes
- Université Gustave Eiffel - Site de Nantes
- Université Paris-Saclay GS Géosciences, climat, environnement et planètes
- Université Paris-Saclay GS Sciences de l'ingénierie et des systèmes
- Université d'Artois
- Université de Haute-Alsace
- Université de Limoges
- Université de Montpellier
- Université de Toulouse
- Université de Tours
- 34 more »
- « less
-
Field
-
interdisciplinary, and together we contribute to science and society. Your role We seek a highly motivated bioinformatician or computational biologist who is well versed in the statistical and machine learning
-
motivated the development of Federated Learning (FL) [1,2], a framework for on-device collaborative training of machine learning models. FL algorithms like FedAvg [3] allow clients to train a common global
-
Context and Motivation Bilevel optimization problems, in which one optimization problem is nested within another, arise in a wide range of machine learning settings. Typical examples include
-
Keywords: theoretical biophysics, machine learning, kinematics, (structural) biology. Context. Machine learning techniques have made significant progress in prediction of favourable structures from
-
, the adoption of Machine Learning (ML) techniques for the analysis of archaeological data sets is rapidly increasing [Mackenzie, 2017, Mesanza-Moraza et al., 2020, Bickler, 2021, Palacios, 2023]. ML applications
-
Leveraging the spatio-temporal coherence of distributed fiber optic sensing data with Machine Learning methods on Riemannian manifolds Apply by sending an email directly to the supervisor
-
patient clusters and digital phenotypes, leveraging machine learning approaches to identify individuals at high CV risk based on clinical and biochemical markers, immune markers, digital health data (e.g
-
should have a graduate degree (Master 2 degree). Him/her scholar background should include: • statistical/machine learning, statistical inference, clustering, classification • deep learning, variational
-
(History, Archeology, …). Expected skills: The candidate should have a graduate degree (Master 2 degree). Him/her scholar background should include: • statistical/machine learning, statistical inference
-
Apply by sending an email directly to the supervisor Primary discipline: Machine Learning Secondary discipline: Neuroscience Project Summary This project proposes to explore how the brain and