-
: This PhD project will develop model- and data-driven hybrid machine learning material models that capture the complex, nonlinear, path- and history-dependent behaviour of materials. The goal is to create
-
: This PhD project will develop model- and data-driven hybrid machine learning material models that capture the complex, nonlinear, path- and history-dependent behaviour of materials. The goal is to create
-
that activity-silent mechanisms, such as short-term synaptic plasticity, also play an important role. We will experimentally target these two mechanisms, using EEG in combination with machine learning to reveal
-
mechanics at the atomic scale. In this project, the University of Groningen will develop an array of state-of-the-art machine learning potentials for multi-component alloy systems that are relevant