Sort by
Refine Your Search
-
Employer
- Nature Careers
- CNRS
- NeuroSchool, Aix-Marseille Université
- Université de Lille
- Grenoble INP - Institute of Engineering
- Sorbonne Université SIM (Sciences, Ingénierie, Médecine)
- Université Grenoble Alpes
- Université Toulouse III Paul Sabatier
- Université d'Orléans
- Université de Bordeaux / University of Bordeaux
- Avignon Université
- CETHIL (INSA-LYON)
- CNRS - Aix-Marseille Université
- Centrale Lille Institut
- Centre des Sciences du Goût et de l’Alimentation, UMR1324 INRA, UMR6265 CNRS, Université de Bourgogne, Agrosup Dijon, F-21000 Dijon, France
- ENS de Lyon
- Ecole nationale des chartes
- ICube (UMR 7357)
- IMT Mines Ales
- IMT Nord Europe
- Inria, the French national research institute for the digital sciences
- Institut Agro Rennes-Angers
- Institut Curie - PSL
- Institut Fresnel
- Institut Pasteur
- LMOPS - UNIVERSITE DE LORRAINE
- Mines Paris
- Télécom Paris
- Université Clermont Auvergne
- Université Paris-Saclay GS Géosciences, climat, environnement et planètes
- Université Paris-Saclay GS Physique
- Université de Lorraine
- Université de Picardie - Jules Verne
- Université de Poitiers - Institut PPRIME
- Université de Tours
- Université du Littoral Côte d'Opale
- 26 more »
- « less
-
Field
-
competences in Artificial Intelligence models, medical image processing, and mathematical modeling (Master 2 level). We seek solid programming and IT skills, along with good communication abilities and an
-
participate to scientific life of the teams. 3- Profile and skills required We are looking for a candidate with competences in Artificial Intelligence models, medical image processing, and mathematical modeling
-
Master/engineer degree in computer science, applied mathematics, data science with background in image processing, imaging inverse problems, deep learning and optimisation. Good coding skills for numerical
-
a challenging problem. Candidate profile PhD on optimization and/or image processing. Strong background in applied mathematics, image processing, learning methods and algorithms. Good coding skills
-
. Philion and S. Fidler, “Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3d,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28
-
of the domain, while the pre-processing step of geometry manipulation and mesh generation is one of the most important efficiency bottlenecks in such methods. The challenge is more prominent in modern, real-world
-
. Required Skills and Candidate Profile The project is intended for a candidate with: ➢ Skills in medical image processing and deep learning adapted to clinical applications. ➢ A good knowledge of Python
-
Professor in Medical Imaging. The Faculty of Science, Technology, and Medicine at the University of Luxembourg strives for excellence in the education and research of medicine, biomedical sciences and allied
-
-processing, the problems of aberrations and reverberations that generally pollute ultrasonic imaging (Bureau, 2003). Marine acoustic imagery is often faced with more deterministic multi-layer environments
-
Professor in clinical imaging. The Faculty of Science, Technology, and Medicine at the University of Luxembourg strives for excellence in the education and research of medicine, biomedical sciences and allied