Sort by
Refine Your Search
-
Listed
-
Category
-
Employer
- ;
- Cranfield University
- ; The University of Manchester
- ; Cranfield University
- ; University of Warwick
- University of Nottingham
- ; Imperial College London
- ; Swansea University
- ; University of Birmingham
- ; University of Leeds
- ; University of Nottingham
- ; University of Oxford
- ; University of Southampton
- University of Cambridge
- 4 more »
- « less
-
Field
-
code based on Modified Newtonian aerodynamics and a coupled, nonlinear thermo-structural finite element solver. Supervisors: Professor Matthew Santer, Dr. Paul Bruce. Learning opportunities: You will
-
-speed cameras (in a newly renovated lab dedicated to our research group). A significant component of the analysis will include image processing, including data-driven methods and machine learning. You
-
fluid dynamics (CFD) simulations, Finite Element Analysis, manage and execute the procurement of the build, run the aerothermal testing and process and communicate the results. The skills, qualifications
-
meromorphic functions is connected, and that each component of any attracting basin contains only finitely many critical points, counting multiplicity. Is the Julia set locally connected (again in analogy with
-
utilise numerical techniques including the finite element method to describe biofluid flow and deformation in the human brain tissue. Parameters are inferred from clinical data including medical images
-
experience in microstructural analyses. Familiarity with mechanical testing procedures and, ideally, experience in numerical simulation (e.g., finite element methods). Strong analytical skills, an independent
-
treatments, and exposure to gaseous impurities. Using both experimental testing and finite element modelling, you’ll help develop practical guidelines to mitigate hydrogen embrittlement and enable safer, more
-
on: 1. Finite Element Simulations & Experimental Data Collection: High-fidelity simulations and scaled prototype testing will generate data on stress distribution, local buckling, and damage evolution. 2
-
project will combine advanced materials testing and finite element modelling to explore hydrogen-material interactions, particularly in ferritic and austenitic steels. You’ll investigate how these materials
-
/or dynamic analysis of mechanical/robotic systems •Ability to use finite element modelling and to simulate complex mechatronics •Ability to implement control and kinematics with hardware-in-the-loop