Sort by
Refine Your Search
-
Listed
-
Category
-
Country
-
Employer
- Nature Careers
- Technical University of Munich
- Argonne
- University of Maryland
- University of North Carolina at Chapel Hill
- Baylor University
- Chalmers University of Technology
- Charles University in Prague
- Chinese Academy of Sciences
- Chongqing University
- Durham University
- ETH Zurich
- European Magnetism Association EMA
- Johann Radon Institute for Comp. and Applied Mathematics
- King Abdullah University of Science and Technology
- Leibniz
- Los Alamos National Laboratory
- New York University
- North Carolina State University
- Pacific Institute for the Mathematical Sciences
- Princeton University
- SciLifeLab
- Sun Yat-Sen University
- Technical University of Denmark
- Texas A&M University
- UNIVERSITY OF VIENNA
- Umeå University
- University College Cork
- University of British Columbia
- University of Groningen
- University of Kansas
- University of Oxford
- University of South Carolina
- University of Texas at El Paso
- University of Vienna
- Westlake University
- 26 more »
- « less
-
Field
-
, Python, Julia, or MATLAB Knowledge in numerical methods and simulation, particularly for partial differential equations and finite element methods Basic understanding of mathematical modeling with and/or
-
differential equations, computational fluid dynamics, material science, dynamical systems, numerical analysis, stochastic analysis, graph theory and applications, mathematical biology, financial mathematics
-
computationally challenging. To address this, our research employs advanced computational methods to simplify high-fidelity 1-D hydrodynamic models based on Partial Differential Equations (PDEs). This approach
-
inherently problematic numerically. Secondly, the differential equation used to evolve a magnetic system forward in time might be stiff, thus requiring special numerical techniques. You will research and
-
postdoctoral position, with the possibility of renewal, in the field of Analysis and Partial Differential Equations (PDEs). Job description - The successful candidate will collaborate on research projects
-
to produce optimal designs. Applicants should have skills in modelling, familiarity with partial differential equations, and be familiar with python. They will have, or be close to completing, a PhD in
-
of nonlinear partial differential equations, dynamical systems, Hamiltonian systems and integrable equations to address several gaps in our theoretical understanding of internal water waves. This project will
-
inspired numerical methods for partial differential equations, data generation from small datasets, etc. Job Duties Job Duty Research in modeling of complex biological systems. Develop models and modules
-
++, or similar languages. Demonstrated expertise in machine learning, especially in the context of dynamical systems modeled by differential-algebraic equations. Experience with high-performance computing and the
-
architectures and training algorithms, uncertainty quantification, high-dimensional stochastic systems and high-dimensional partial differential equation systems. Multiple positions available. About the T-5 Group