Sort by
Refine Your Search
-
Listed
-
Category
-
Country
-
Employer
- ;
- Cranfield University
- University of Nottingham
- ; The University of Manchester
- ; Swansea University
- ; University of Nottingham
- University of Cambridge
- ; University of Birmingham
- University of Sheffield
- ; Loughborough University
- ; University of Southampton
- ; University of Surrey
- ; University of Oxford
- AALTO UNIVERSITY
- ; Brunel University London
- ; Cranfield University
- ; University of Bristol
- ; Newcastle University
- ; University of Cambridge
- ; University of Reading
- ; Aston University
- ; Coventry University Group
- ; EPSRC Centre for Doctoral Training in Green Industrial Futures
- ; Imperial College London
- ; King's College London
- ; The University of Edinburgh
- ; University of Exeter
- ; University of Hertfordshire
- ; University of Limerick
- ; University of Plymouth
- ; University of Sheffield
- ; University of Strathclyde
- ; University of Sussex
- ; University of Warwick
- Aston University
- Harper Adams University
- Heriot Watt University
- Imperial College London
- National Institute for Bioprocessing Research and Training (NIBRT)
- Newcastle University
- University of Liverpool
- University of Manchester
- 32 more »
- « less
-
Field
-
mechanical and chemical properties; fully 3D-printed electronics; and devices with mechanical or electrical responses encoded into their structure. However, we don’t yet know how to design these complex
-
subsample of children with craniopharyngioma and healthy controls. Part 3 will involve an intervention neuroimaging study (EEG and/or fMRI) in healthy controls, aiming to illuminate the mechanisms through
-
spaces and habits for them. This is a highly interdisciplinary project that combines computational modelling and behavioural science. The first part will be based on the use of state-of-the-art
-
to deepen our understanding of IAI mechanisms and develop innovative antibacterial biomaterials to improve patient outcomes. Structured around three core scientific pillars-regenerative medicine, biomaterial
-
, this interdisciplinary project will focus on developing robust, practical tools to assess and predict recyclate quality. The work will involve thermal analysis (e.g. DSC, TGA), rheology, mechanical testing, and molecular
-
, engineering (e.g.: mechanical, electrical, electronic, materials) or a related subject. A relevant master’s degree and/or experience in the use of wearable technology will be an advantage but not essential
-
this advanced manufacturing process will open new opportunities: devices with variable mechanical and chemical properties; fully 3D-printed electronics; and devices with mechanical or electrical responses encoded
-
: This position is ideal for candidates with a background in civil engineering, structural engineering and mechanical engineering. Applicants should demonstrate: A strong interest in both experimental and numerical
-
sequencing, bulk and single-cell RNA-seq. These methodologies will be refined and later applied to Welsh genomic resources (SAIL/AWMGS) to identify patient subgroups, uncover disease-driving mechanisms, and
-
: Computational Modelling: Employing simulation tools (e.g., GEANT4, light transport) to explore novel metamaterial designs, predict performance, and optimise key parameters such as timing resolution, light yield