Sort by
Refine Your Search
-
Listed
-
Category
-
Program
-
Field
-
surveys and targeted observations are used to search for active galactic nuclei, trace star formation and measure stellar kinematics within galaxies. How galaxies grow within structures dark matter can be
-
the Faculty of Science. We will apply Bayesian approaches such as the information-theoretic minimum message length (MML) principle and other approaches to develop a path towards statistically-optimal algorithms
-
for the prediction task, such as predicting the bioassay of a given chemical network. One of the approaches that will be considered will be the Bayesian information-theoretic Minimum Message Length (MML) principle
-
back at least as far as 1954 (Dowe, 2008a, sec. 1, pp549-550). Discussion of how to do this using the Bayesian information-theoretic minimum message length (MML) approach (Wallace and Boulton, 1968
-
Methods of balancing model complexity with goodness of fit include Akaike's information criterion (AIC), Schwarz's Bayesian information criterion (BIC), minimum description length (MDL) and minimum
-
decline and dementia progression will be targeted, namely vascular risk, poor sleep, low cognitive and social engagement, low mood and risk of falls. This project will provide the foundational evidence to
-
of a GIS-Based Model for Active Citizenry Street-Level Environment Recognition On Moving Resource-Constrained Devices Bayesian Generative AI Explainability and Compact representation of K-MDPs Creating a
-
. Among the approaches used will be the Bayesian information-theoretic Minimum Message Length (MML) principle (Wallace and Boulton, 1968; Wallace and Dowe, 1999a; Wallace, 2005) References: Wallace, C.S
-
used will the information-theoretic Bayesian minimum message length (MML) principle. Student cohort PhD, possibly Master’s (Minor Thesis) or Honours URLs/references Chen, Li and Gao, Jiti and Vahid
-
techniques for annotation, active learning (based on either deep learning or Bayesian learning), semi-supervised learning, transfer learning, imitation learning, etc., aiming to ensure the data and models