Sort by
Refine Your Search
-
projects, including: The post-holder will run numerical models that simulate the dispersion of greenhouse gases through the atmosphere. These models will be used, in Bayesian inference frameworks
-
international projects, including: The post-holder will run numerical models that simulate the dispersion of greenhouse gases through the atmosphere. These models will be used, in Bayesian inference frameworks
-
in knowledge-informed machine learning. The ideal candidate will have a strong background in developing and integrating probabilistic graphical models, Bayesian networks, causal inference, Markov
-
, kernel machines, decision trees and forests, neural networks, boosting and model aggregation, Bayesian inference and model selection, and variational inference. Practical and theoretical understanding
-
to statistical computing, Bayesian modeling, causal inference, clinical trials and analysis of complex large-scale data such as omics data, wearable tech, and electronic health record, with specific preference