Sort by
Refine Your Search
-
Listed
-
Category
-
Program
-
Employer
- Fraunhofer-Gesellschaft
- Technical University of Munich
- Forschungszentrum Jülich
- Nature Careers
- DAAD
- Leibniz
- ;
- Free University of Berlin
- Max Planck Institute for Brain Research, Frankfurt am Main
- Deutsches Elektronen-Synchrotron DESY •
- Fritz Haber Institute of the Max Planck Society, Berlin
- Helmholtz-Zentrum Geesthacht
- Max Planck Institute for Molecular Genetics •
- Max Planck Institute for Multidisciplinary Sciences, Göttingen
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg
- Max Planck Institutes
- RWTH Aachen University
- Saarland University •
- Technische Universität Braunschweig
- Technische Universität München
- University of Bremen •
- University of Potsdam •
- University of Tübingen
- 13 more »
- « less
-
Field
-
holistic view of interconnected biological systems in health and disease. We develop clearing technologies for cellular-level imaging and deep learning algorithms (AI) to analyze large imaging and molecular
-
are using ferroelectric memories, which can calculate AI algorithms from the field of deep learning in resistive crossbar structures with extremely low power consumption and high speed. Furthermore, we
-
are using ferroelectric memories, which can calculate AI algorithms from the field of deep learning in resistive crossbar structures with extremely low power consumption and high speed. Furthermore, we
-
are using ferroelectric memories, which can calculate AI algorithms from the field of deep learning in resistive crossbar structures with extremely low power consumption and high speed. Furthermore, we
-
application from qualified women. About the position The position involves both teaching and engaging in innovative research projects on tractor autonomy, path-planning algorithms, soil compaction modeling, and
-
focus on a current research area in algebra and meaningfully complement the existing research, for example, in the fields of representation theory, algorithmic algebra, tropical geometry, or algebraic
-
are using ferroelectric memories, which can calculate AI algorithms from the field of deep learning in resistive crossbar structures with extremely low power consumption and high speed. Furthermore, we
-
are using ferroelectric memories, which can calculate AI algorithms from the field of deep learning in resistive crossbar structures with extremely low power consumption and high speed. Furthermore, we
-
are using ferroelectric memories, which can calculate AI algorithms from the field of deep learning in resistive crossbar structures with extremely low power consumption and high speed. Furthermore, we
-
experience with algorithms relevant to computational biology documented programming skills, e.g. in Python and R very good communication and organizational skills with the ability to work to timelines, both