Sort by
Refine Your Search
-
Listed
-
Employer
- CNRS
- Inria, the French national research institute for the digital sciences
- CEA
- Nature Careers
- IMT Mines Ales
- IRIT, Université de Toulouse
- Arts et Métiers Institute of Technology (ENSAM)
- ESRF - European Synchrotron Radiation Facility
- IMT - Institut Mines-Télécom
- IMT Atlantique
- Institut Pasteur
- Laboratoire National de Métrologie et d'Essais - LNE
- Mines Saint-Etienne
- NIMES UNIVERSITE
- UNIVERSITE DE TECHNOLOGIE DE COMPIEGNE
- Université de Caen Normandie
- Université de Lorraine
- Université de Strasbourg
- Université de Toulouse
- université Strasbourg
- 10 more »
- « less
-
Field
-
optimization. Knowledge in algorithms for sampling/variational inference and kernel methods will also be welcome. Interest or experience in differential geometry, optimal transport, and remote sensing
-
réseaux neuronaux) et les décompositions tensorielles (multicouches) de rang faible [5,6,7], qui fournissent un cadre mathématique rigoureux pour développer des nouveaux algorithmes et architectures et pour
-
collaboration with other CEA teams, notably ; * Parallel and cluster computing environment and efficient LP/MILP algorithms for our large-scale models ; * Data structuring and storage solutions for model input
-
Inria, the French national research institute for the digital sciences | Saint Martin, Midi Pyrenees | France | about 2 months ago
follows a phased algorithm: 1) generate an initial training set by uniformly sampling input points 2) (re)train the model on the trainng set 3) use feedback from the model’s performance to generate/augment
-
resources to carry out your assignments. YOUR ASSIGNMENTS: The internship will develop and implement scalable, high‑performance algorithms for transient Lindblad dynamics tailored to the multi‑level Rydberg
-
the prediction algorithms, will finally be deployed under industrial conditions at a cryogenic H2 storage site. Where to apply Website https://institutminestelecom.recruitee.com/o/doctorat-developpement
-
into refining computational strategies for large-scale molecular simulations in materials science and computational physics. The project will involve substantial numerical development, including algorithm design
-
training, as well as on machine learning or generative AI models. Technology watch on AI recommendation models and optimization of recommendation algorithms. Implementation of the recommendation engine
-
of Opportunity (SOP) for geolocation. The laboratory has developed algorithms to perform geolocation using such signals. We now wish to move on to an experimental phase. The mission will take place at the SAMOVAR
-
compatible with in vivo imaging still needs to be developed. In practice, the first part of this project will involve familiarizing the student with algorithms for measuring cell motility in traditional FF-OCT