Sort by
Refine Your Search
-
Category
-
Program
-
Employer
- Nature Careers
- CNRS
- Grenoble INP - Institute of Engineering
- NeuroSchool, Aix-Marseille Université
- Université de Lorraine
- CEA
- Ecole Nationale Supérieure des Mines de Saint Etienne
- Inria, the French national research institute for the digital sciences
- Institut Pasteur
- Université d'Orléans
- Université de Picardie - Jules Verne
- Université de Tours
- CNRS - Aix-Marseille Université
- Ecole Centrale de Nantes
- Ecole nationale des chartes
- ICube (UMR 7357)
- IMT
- IMT Atlantique
- IMT Mines Albi
- IMT Nord Europe
- INSERM U1082
- Mines Paris - PSL, Centre PERSEE
- Toulouse INP
- Télécom Paris
- UNIVERSITE LIMOGES
- Université Grenoble Alpes
- Université Marie et Louis Pasteur
- Université Paris-Saclay GS Géosciences, climat, environnement et planètes
- Université Paris-Saclay GS Life Sciences and Health
- Université d'Artois
- Université de Bordeaux / University of Bordeaux
- Université de Lille
- Université de Montpellier
- Université du Littoral Côte d'Opale
- 24 more »
- « less
-
Field
-
suitable data models [CSC+23]. Objectives As far as the design of efficient numerical algorithms in an off-the-grid setting is concerned, the problem is challenging, since the optimization is defined in
-
fonction de la taille de la sortie [JYP88]. On peut en dégager une notion de temps d'exécution « par solution », et on recherche alors - le graal - des algorithmes à délai polynomial. Ces algorithmes
-
Inria, the French national research institute for the digital sciences | Talence, Aquitaine | France | 2 months ago
. The aim of this 2-year mission - co-funded by Airbus and Inria - is to work on low-rank compression algorithms, which are a fundamental building block of the H-matrix approach. There is a huge variety of
-
- 4 Research FieldPsychological sciences » PsychologyYears of Research Experience1 - 4 Additional Information Eligibility criteria - Strong background in neuroevolutionary algorithms and/or NAS
-
algorithms have been used to solve complex problems. However, these types of strategies, although popular, are heterogeneous or generated according to the needs of the case study. This has generated multiple
-
minimizing error and maximizing efficiency, is computationally challenging—no known polynomial-time algorithm exists to solve it optimally in all cases. Because of this complexity, researchers typically rely
-
techniques and the structure of bilevel problems in large-scale settings. Objectives The goal of this postdoctoral project is to develop scalable blackbox optimization algorithms tailored to bilevel problems
-
on stochastic Riemannian optimization algorithms, these methods still suffer from limitations in computational complexity. The post-doctoral fellow will build upon this preliminary work to investigate
-
algorithms for dynamic structured data, with a particular focus on time sequences of graphs, graph signals, and time sequences on groups and manifolds. Special emphasis will be placed on non-parametric
-
in developing new tools to understand the nervous system and to explore theories behind neural phenomena. As for developing new tools, we have been working on network alignment algorithms [FCC+21] and